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Abstract

Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to 

their unique mechanical and electrical properties.  The materials exhibit extremely high strength 

and conductivity when defects created during synthesis are minimized. Atomistic modeling is 

one technique for high resolution studies of defect formation and mitigation.  To enable 

simulations of the mechanical behavior and growth mechanisms of C nanostructures, a high-

fidelity analytical bond-order potential for the C is needed. To generate inputs for developing 

such a potential, we performed quantum mechanical calculations of various C structures. 
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NOMENCLATURE

di dimer
tri trimer
ch chain
tetra tetragon
sq square
dc diamond-cubic
sc simple-cubic
bcc body-centered-cubic
fcc face-centered-cubic
hcp hexagonal-closely-packed
gra graphite
grap graphene
MD molecular dynamics
DFT density functional theory
PAW projector-augmented-wave
VASP Vienna Ab initio Simulation Package
vdW van der Waals
GGA generalized-gradient approximation
PBE Perdew, Burke and Ernzerhof density functional
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1.  INTRODUCTION 

Carbon nanostructures, such as nanotubes and graphene, are of considerable interest due to their 
mechanical and electrical properties.  To develop defect free C nanostructures, predictive 
molecular dynamics (MD) simulations of C growth mechanisms are very valuable. Such 
simulations require a high-fidelity C interatomic potential [1]. To generate reference data for 
parameterizing the C potential, we performed quantum mechanical calculations to determine the 
cohesive energy and structural properties of various configurations of C. For convenience, we 
will use the following abbreviations to represent structures: di: dimer; tri: trimer; ch: chain; sq: 
square; tetra: tetragon; dc: diamond-cubic; sc: simple-cubic; bcc: body-centered-cubic; fcc: face-
centered-cubic; hcp: hexagonal-closely-packed; gra: graphite; grap: graphene. 
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2.  QUANTUM MECHANICAL METHODS

All density functional theory (DFT) calculations were performed within the spin-polarization 
formalism using the optB86b-vdW functional [2] and projector-augmented-wave (PAW) [3, 4] 
pseudopotentials. The optB86b-vdW functional was used because of its ability to capture 
dispersion interactions (van der Waals forces) which are essential for modeling the 
intramolecular interactions in C based systems (e.g. the interactions between graphene sheets in 
graphite); moreover, this functional has been shown to improve over transition generalized-
gradient approximation (GGA) functionals (e.g. PBE) for a range of solids on the prediction of 
lattice constants, cohesive energies, and bulk moduli [2]. For all calculations a plane-wave cutoff 
energy of 500 eV was used and full geometry optimizations (ions and unit cell) were performed 
until all forces were smaller than 0.01 eV/Å. For bulk lattices, the Brillouin zone was sampled 
using a 10 × 10 × 10 gamma-centered Monkhorst-Pack grid [5]. For small clusters, the 
calculations are carried out in a 25 Å3 box using a gamma-point Brillouin zone. All calculations 
were performed within VASP 5.3.5 [6, 7, 8, 9].



10

3.  RESULTS

The energies and atomic spacings of various clusters, consisting of four or less atoms for the 
elemental C are given in Table 1.  The cohesive energies and atomic volumes of various 
elemental C lattice structures are given in Table 2.  It should be noted that the experimental 
values for C structures [10, 11] are in good agreement. 

Table 1.  Cohesive energies Ec (eV/atom) and atom spacing r (Å) of various C clusters.  
For chain r values, the first value is the exterior bond length and the second number is 

the internal bond length.

CStructure
Ec r

tetra -3.9410 1.5065
square -4.6471 1.4664
trimer -4.8444 1.3753
dimer -3.4625 1.3127
chain -5.2705 1.3175,

1.2958

Table 2.  Cohesive energies Ec (eV/atom) and lattice constants a, c (Å) for selected 
lattices. Experimental values are given in parenthesis [10, 11]

DFTStructure
Ec a,c

bcc -3.8272 2.3745
dc -8.0186

(-7.38)
3.5619
(3.56)

fcc -3.6094 3.0884
gra -8.0581

(-7.4)
2.465, 6.3949

(2.46,6.69)
grap -7.9919 2.4644
hcp -4.1203 1.71965, 6.1473
sc -5.2387 1.7517
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3.  SUMMARY

This work presents a database of energies and geometric parameters for a range of structures for 
elemental C.  The values are determined from DFT and were used for parameterizing interatomic 
potentials for MD simulations [1].
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